General volatility smile asymptotics with bounded maturity

Jacopo Corbeta

Università degli Studi di Milano-Bicocca

Joint work with Francesco Caravenna (Milano-Bicocca)

Parma ~ January 30, 2015
Outline

1. Preliminaries and notations
2. From option price to implied volatility
3. From tail probability to option price
4. Examples
Outline

1. Preliminaries and notations

2. From option price to implied volatility

3. From tail probability to option price

4. Examples
The setting

- Log-price process \((X_t)_{t \geq 0}\) with \(X_0 = 0\) (risk-neutral measure)
The setting

- Log-price process \((X_t)_{t \geq 0}\) with \(X_0 = 0\) (risk-neutral measure)
- Price \((S_t := e^{X_t})_{t \geq 0}\) is a martingale
The setting

- Log-price process \((X_t)_{t \geq 0}\) with \(X_0 = 0\) (risk-neutral measure)
- Price \((S_t := e^{X_t})_{t \geq 0}\) is a martingale
- European call and put (maturity \(t > 0\), log-strike \(\kappa \in \mathbb{R}\))

\[
c(\kappa, t) = \mathbb{E}[(e^{X_t} - e^{\kappa})^+] , \quad p(\kappa, t) = \mathbb{E}[(e^{\kappa} - e^{X_t})^+] .
\]
The setting

- Log-price process \((X_t)_{t \geq 0}\) with \(X_0 = 0\) (risk-neutral measure)
- Price \((S_t := e^{X_t})_{t \geq 0}\) is a martingale
- European call and put (maturity \(t > 0\), log-strike \(\kappa \in \mathbb{R}\))

 \[
 c(\kappa, t) = \mathbb{E}[(e^{X_t} - e^\kappa)^+] , \quad p(\kappa, t) = \mathbb{E}[(e^\kappa - e^{X_t})^+] .
 \]

- Right- and left-tail probability:

 \[
 \overline{F}_t(\kappa) := \mathbb{P}(X_t > \kappa) , \quad F_t(\kappa) := \mathbb{P}(X_t \leq \kappa) .
 \]
The setting

- Log-price process \((X_t)_{t \geq 0}\) with \(X_0 = 0\) (risk-neutral measure)
- Price \((S_t := e^{X_t})_{t \geq 0}\) is a martingale
- European call and put (maturity \(t > 0\), log-strike \(\kappa \in \mathbb{R}\))
 \[
 c(\kappa, t) = \mathbb{E}[(e^{X_t} - e^{\kappa})^+], \quad p(\kappa, t) = \mathbb{E}[(e^{\kappa} - e^{X_t})^+].
 \]
- Right- and left- tail probability:
 \[
 \overline{F}_t(\kappa) := P(X_t > \kappa), \quad F_t(\kappa) := P(X_t \leq \kappa).
 \]
- We take limits along an arbitrary family \((\kappa_s, t_s)_{s \geq 0}\).
The setting

- Log-price process \((X_t)_{t \geq 0}\) with \(X_0 = 0\) (risk-neutral measure)
- Price \((S_t := e^{X_t})_{t \geq 0}\) is a martingale
- European call and put (maturity \(t > 0\), log-strike \(\kappa \in \mathbb{R}\))

\[
c(\kappa, t) = E[(e^{X_t} - e^{\kappa})^+] , \quad p(\kappa, t) = E[(e^{\kappa} - e^{X_t})^+] .
\]

- Right- and left- tail probability:

\[
\bar{F}_t(\kappa) := P(X_t > \kappa) , \quad F_t(\kappa) := P(X_t \leq \kappa) .
\]

- We take limits along an arbitrary family \((\kappa_s, t_s)_{s \geq 0}\).
- We assume that \(\kappa_s \geq 0\) and give results for both \(\kappa_s\) and \(-\kappa_s\).
Recall the standard Black&Scholes formula for a European call:

$$C_{BS}^{\sigma}(\kappa, t) = \Phi(d_1) - e^{\kappa} \Phi(d_2),$$

$$d_1 = -\frac{\kappa}{\sigma \sqrt{t}} + \frac{\sigma \sqrt{t}}{2}, \quad d_2 = -\frac{\kappa}{\sigma \sqrt{t}} - \frac{\sigma \sqrt{t}}{2}.$$
Recall the standard Black & Scholes formula for a European call:

\[
C_{BS}(\kappa, t) = \Phi(d_1) - e^{\kappa t} \Phi(d_2),
\]

\[
d_1 = -\frac{\kappa}{\sigma \sqrt{t}} + \frac{\sigma \sqrt{t}}{2}, \quad d_2 = -\frac{\kappa}{\sigma \sqrt{t}} - \frac{\sigma \sqrt{t}}{2}.
\]

Definition

The implied volatility \(\sigma_{\text{imp}}(\kappa, t) \) of the model is the unique value of \(\sigma \in [0, \infty) \) such that

\[
C_{BS}^\sigma(\kappa, t) = c(\kappa, t).
\]
Aim of the paper

Find an explicit link between tail probability and implied volatility

when $\kappa \to \infty$ with bounded t, or $t \to 0$ with arbitrary κ.

Remark

We require $c(\kappa, t) \to 0$, $p(-\kappa, t) \to 0$, with t bounded from above.
Aim of the paper

Find an explicit link between tail probability and implied volatility when $\kappa \to \infty$ with bounded t, or $t \to 0$ with arbitrary κ.

This gathers

- $\kappa \to \infty$ and $t \to \bar{t} \in (0, \infty)$;
- $\kappa \to \infty$ and $t \to 0$;
- $\kappa \to \bar{\kappa} \in (0, \infty)$ and $t \to 0$;
- $\kappa \to 0$ and $t \to 0$.

Remark

We require $c(\kappa, t) \to 0$, $p(-\kappa, t) \to 0$, with t bounded from above.
Aim of the paper

Find an explicit link between tail probability and implied volatility when \(\kappa \to \infty \) with bounded \(t \), or \(t \to 0 \) with arbitrary \(\kappa \).

This gathers

- \(\kappa \to \infty \) and \(t \to \bar{t} \in (0, \infty) \);
- \(\kappa \to \infty \) and \(t \to 0 \);
- \(\kappa \to \bar{\kappa} \in (0, \infty) \) and \(t \to 0 \);
- \(\kappa \to 0 \) and \(t \to 0 \).

Remark

We require

\[c(\kappa, t) \to 0, \quad p(-\kappa, t) \to 0, \]

with \(t \) bounded from above.
Comparison with literature

- Lee (2004): limsup in the case $|\kappa| \to \infty$ for fixed t
- Benaim and Friz (2009): case $|\kappa| \to \infty$ for fixed t
- Gao and Lee (2014): sharper estimates in the regime $\kappa \not\to 0$
Outline

1. Preliminaries and notations

2. From option price to implied volatility

3. From tail probability to option price

4. Examples
Heuristics

For fixed $\kappa > 0$ and $t \to 0$, or $\kappa \to \infty$ and fixed $t > 0$

$$c(\kappa, t) = C_{BS}^{\sigma_{imp}(\kappa, t)}(\kappa, t) \approx e^{-\frac{\kappa^2}{2\sigma_{imp}(\kappa, t)t}}$$

(\star)
Heuristics

For fixed $\kappa > 0$ and $t \to 0$, or $\kappa \to \infty$ and fixed $t > 0$

$$c(\kappa, t) = C_{BS}(\kappa, t) \approx e^{-\frac{\kappa^2}{2\sigma_{imp}(\kappa, t)^2} t} \tag{*}$$

Inverting this relation gives

$$\sigma_{imp}(\kappa, t) \sim \frac{\kappa}{\sqrt{2t} \sqrt{-\log c(\kappa, t)}} \tag{**}$$
Heuristics

For fixed $\kappa > 0$ and $t \to 0$, or $\kappa \to \infty$ and fixed $t > 0$

$$c(\kappa, t) = C_{BS}^{\sigma_{imp}(\kappa, t)}(\kappa, t) \approx e^{\frac{-\kappa^2}{2\sigma_{imp}(\kappa, t)t}} \quad (\star)$$

Inverting this relation gives

$$\sigma_{imp}(\kappa, t) \sim \frac{\kappa}{\sqrt{2t} \sqrt{-\log c(\kappa, t)}} \quad (\star\star)$$

Relations (\star)-$(\star\star)$ are not always true, when $\kappa \to \infty$.

In complete generality, we can state the following result. Define

$$D(x) = \frac{\varphi(x)}{x} - \Phi(-x)$$

with

$$\begin{align*}
\varphi(z) &:= e^{-\frac{z^2}{2}} \sqrt{2\pi} \\
\Phi(x) &:= \int_{-\infty}^{x} \varphi(z) \, dz
\end{align*}$$
Theorem 1: from option price to implied volatility

Consider an arbitrary family of \((\kappa, t) = ((\kappa_s, t_s))_{s \geq 0}\) such that \(c(\kappa, t) \to 0\) (i.e. in all the previously stated regimes).
Theorem 1: from option price to implied volatility

Consider an arbitrary family of \((\kappa, t) = ((\kappa_s, t_s))_{s \geq 0}\) such that
\(c(\kappa, t) \to 0\) (i.e. in all the previously stated regimes).

- Case of \(\kappa\) bounded away from zero (i.e. \(\lim \inf \kappa > 0\)).

\[
\sigma_{\text{imp}}(\kappa, t) \sim \left(\sqrt{\frac{-\log c(\kappa, t)}{\kappa}} + 1 - \sqrt{\frac{-\log c(\kappa, t)}{\kappa}}\right)\sqrt{\frac{2\kappa}{t}}
\]
Theorem 1: from option price to implied volatility

Consider an arbitrary family of \((\kappa, t) = ((\kappa_s, t_s))_{s \geq 0}\) such that \(c(\kappa, t) \to 0\) (i.e. in all the previously stated regimes).

- **Case of \(\kappa\) bounded away from zero** (i.e. \(\lim \inf \kappa > 0\)).

 \[
 \sigma_{\text{imp}}(\kappa, t) \sim \left(\sqrt{-\frac{\log c(\kappa, t)}{\kappa}} + 1 - \sqrt{-\frac{\log c(\kappa, t)}{\kappa}}\right) \sqrt{\frac{2\kappa}{t}}
 \]

- **Case of \(\kappa \to 0\)**

 \[
 \sigma_{\text{imp}}(\kappa, t) \sim \frac{1}{D^{-1}\left(\frac{c(\kappa, t)}{\kappa}\right)} \frac{\kappa}{\sqrt{t}}
 \]
Theorem 1: from option price to implied volatility

Consider an arbitrary family of \((\kappa, t) = ((\kappa_s, t_s))_{s \geq 0}\) such that \(c(\kappa, t) \to 0\) (i.e. in all the previously stated regimes).

- **Case of \(\kappa\) bounded away from zero (i.e. \(\lim \inf \kappa > 0\)).**

 \[\sigma_{\text{imp}}(\kappa, t) \sim \left(\sqrt{-\frac{\log c(\kappa, t)}{\kappa}} + 1 - \sqrt{-\frac{\log c(\kappa, t)}{\kappa}} \right) \sqrt{\frac{2\kappa}{t}} \]

- **Case of \(\kappa \to 0\)**

 \[\sigma_{\text{imp}}(\kappa, t) \sim \frac{1}{D^{-1}\left(\frac{c(\kappa, t)}{\kappa}\right)} \frac{\kappa}{\sqrt{t}} \]

- **Case of \(\kappa = 0\)**

 \[\sigma_{\text{imp}}(0, t) \sim \sqrt{2\pi} \frac{c(0, t)}{\sqrt{t}} \]
Making the formulas more explicit

If \(-\log c(\kappa, t) / \kappa \to \infty\), for \(\kappa\) bounded away from zero we get (⋆⋆)

\[
\sigma_{\text{imp}}(\kappa, t) \sim \frac{\kappa}{\sqrt{2t \left(-\log c(\kappa, t) \right)}}.
\]
Making the formulas more explicit

If \(-\log c(\kappa, t) \over \kappa \rightarrow \infty\), for \(\kappa\) bounded away from zero we get (⋆⋆)

\[
\sigma_{\text{imp}}(\kappa, t) \sim \frac{\kappa}{\sqrt{2t (-\log c(\kappa, t))}}.
\]

If \(\kappa \rightarrow 0\)

\[
\sigma_{\text{imp}}(\kappa, t) \sim \begin{cases}
\frac{\kappa}{\sqrt{2t (-\log(c(\kappa, t)/\kappa))}} & \text{if } \frac{c(\kappa, t)}{\kappa} \rightarrow 0; \\
\frac{\kappa}{D^{-1}(a) \sqrt{t}} & \text{if } \frac{c(\kappa, t)}{\kappa} \rightarrow a \in (0, \infty); \\
\sqrt{2\pi} \frac{c(\kappa, t)}{\sqrt{t}} & \text{if } \frac{c(\kappa, t)}{\kappa} \rightarrow \infty.
\end{cases}
\]
Outline

1. Preliminaries and notations
2. From option price to implied volatility
3. From tail probability to option price
4. Examples
Heuristic

Crucial Observation

Under mild assumption, for $\kappa > 0$, as $t \downarrow 0$,

$$c(\kappa, t) \approx P(X_t > \kappa) = \overline{F}_t(\kappa).$$
Heuristic

Crucial Observation

Under mild assumption, for $\kappa > 0$, as $t \downarrow 0$,

$$c(\kappa, t) \approx P(X_t > \kappa) = F_t(\kappa).$$

Since

$$c(\kappa, t) = E[(e^{X_t} - e^{\kappa})1\{X_t > \kappa\}] = E[e^{X_t} - e^{\kappa} \mid X_t > \kappa] P(X_t > \kappa)$$

In many (but not all) cases, the first factor $E[e^{X_t} - e^{\kappa} \mid X_t > \kappa]$ gives a negligible contribution with respect to $P(X_t > \kappa)$.
Crucial Observation

Under mild assumption, for $\kappa > 0$, as $t \downarrow 0$,

$$c(\kappa, t) \approx P(X_t > \kappa) = \overline{F}_t(\kappa).$$

Since

$$c(\kappa, t) = E[(e^{X_t} - e^{\kappa})1\{X_t > \kappa\}] = E[e^{X_t} - e^{\kappa} \mid X_t > \kappa] P(X_t > \kappa)$$

In many (but not all) cases, the first factor $E[e^{X_t} - e^{\kappa} \mid X_t > \kappa]$ gives a negligible contribution with respect to $P(X_t > \kappa)$

We need to distinguish two regimes for (κ, t):

- **typical deviations**: tail probability such that $\lim \overline{F}_t(\kappa) > 0$
- **atypical deviations**: tail probability vanishes $\overline{F}_t(\kappa) \to 0$
Atypical deviations \((\overline{F}_t(\kappa) \to 0)\): assumption

Regular Decay

We consider a family \((\kappa, t) = ((\kappa_s, t_s))_{s \geq 0} \) such that \(\forall \varrho \in [1, \infty) \) the following limit exists:

\[
I_+^+ (\varrho) := \lim \frac{\log \overline{F}_t (\varrho \kappa)}{\log \overline{F}_t (\kappa)},
\]

and moreover

\[
\lim_{\varrho \downarrow 1} I_+^+ (\varrho) = 1.
\]

Assumption can be checked in many concrete models

Equivalent to regular variation (Benaim&Friz) for fixed \(t > 0 \)
Atypical deviations ($\bar{F}_t(\kappa) \to 0$): assumption

Regular Decay

We consider a family $(\kappa, t) = ((\kappa_s, t_s))_{s \geq 0}$ such that $\forall \rho \in [1, \infty)$ the following limit exists:

$$l_+ (\rho) := \lim_{\rho \to 1} \frac{\log \bar{F}_t (\rho \kappa)}{\log \bar{F}_t (\kappa)} ,$$

and moreover

$$\lim_{\rho \downarrow 1} l_+ (\rho) = 1 .$$

- Assumption can be checked in many concrete models
Atypical deviations \((\mathcal{F}_t(\kappa) \to 0) \): assumption

Regular Decay

We consider a family \((\kappa, t) = ((\kappa_s, t_s))_{s \geq 0}\) such that \(\forall \varrho \in [1, \infty)\) the following limit exists:

\[
I_+^{(\varrho)} := \lim \frac{\log \mathcal{F}_t(\varrho \kappa)}{\log \mathcal{F}_t(\kappa)},
\]

and moreover

\[
\lim_{\varrho \downarrow 1} I_+^{(\varrho)} = 1.
\]

- Assumption can be checked in many concrete models
- **Equivalent** to regular variation (Benaim&Friz) for fixed \(t > 0\)

\[
\log \mathcal{F}_t(\kappa) \sim L(\kappa) \kappa^\alpha
\]
Consider an arbitrary family of \((\kappa, t) = ((\kappa_s, t_s))_{s \geq 0}\) such that \(\overline{F}_t(\kappa) \to 0\) (atypical deviations).
Assume “Regular Decay” + suitable moment assumptions.
Theorem 2: tail probability to option price, atypical dev.

Consider an arbitrary family of \((\kappa, t) = ((\kappa_s, t_s))_{s \geq 0}\) such that
\(\overline{F}_t(\kappa) \to 0\) (atypical deviations).

Assume “Regular Decay” + suitable moment assumptions.

- Case of \(\lim \inf \kappa > 0, \lim \sup t < \infty\).

\[
\log c(\kappa, t) \sim \log \overline{F}_t(\kappa) + \kappa.
\]
Consider an arbitrary family of \((\kappa, t) = ((\kappa_s, t_s))_{s \geq 0}\) such that \(\overline{F}_t(\kappa) \to 0\) (atypical deviations).

Assume “Regular Decay” + suitable moment assumptions.

- Case of \(\lim \inf \kappa > 0\), \(\lim \sup t < \infty\).
 \[
 \log c(\kappa, t) \sim \log \overline{F}_t(\kappa) + \kappa.
 \]

- Case of \(\kappa \to 0\) and \(t \to 0\).
 \[
 \log \left(\frac{c(\kappa, t)}{\kappa} \right) \sim \log \overline{F}_t(\kappa).
 \]
Corollary (tail probability to implied volatility, atypical dev.)

Under the previous assumption, if moreover \(-\log \overline{F}_t(\kappa)/\kappa \to \infty\),

\[
\sigma_{\text{imp}}(\kappa, t) \sim \frac{\kappa}{\sqrt{2t \left(-\log \overline{F}_t(\kappa) \right)}}.
\]
Corollary (tail probability to implied volatility, atypical dev.)

Under the previous assumption, if moreover $-\log \bar{F}_t(\kappa)/\kappa \to \infty$,

$$
\sigma_{\text{imp}}(\kappa, t) \sim \frac{\kappa}{\sqrt{2t (-\log \bar{F}_t(\kappa))}}.
$$

- Explicit link between right tail probability $\bar{F}_t(\kappa)$ and implied volatility $\sigma_{\text{imp}}(\kappa, t)$ can be applied to many concrete models.
Corollary (tail probability to implied volatility, atypical dev.)

Under the previous assumption, if moreover $- \log \bar{F}_t(\kappa)/\kappa \to \infty$,

$$
\sigma_{\text{imp}}(\kappa, t) \sim \frac{\kappa}{\sqrt{2t (-\log \bar{F}_t(\kappa))}}.
$$

- Explicit link between right tail probability $\bar{F}_t(\kappa)$ and implied volatility $\sigma_{\text{imp}}(\kappa, t)$ can be applied to many concrete models.
- Analogous link between left tail probability $F_t(-\kappa)$ and implied volatility $\sigma_{\text{imp}}(-\kappa, t)$, under weaker assumptions!
Typical deviations \(\lim \bar{F}_t(\kappa) > 0 \)

Assumption: there is a positive function \(\gamma_t \to 0 \) such that

\[
\frac{X_t}{\gamma_t} \xrightarrow{d} Y.
\]

(In many stochastic volatility models \(\gamma_t = \sqrt{t} \) and \(Y = N(0, \sigma_0^2) \).)
Typical deviations ($\lim \bar{F}_t(\kappa) > 0$)

Assumption: there is a positive function $\gamma_t \to 0$ such that

$$
\frac{X_t}{\gamma_t} \xrightarrow{t \downarrow 0} Y.
$$

(In many stochastic volatility models $\gamma_t = \sqrt{t}$ and $Y = N(0, \sigma_0^2)$.)

Theorem

Under suitable moment conditions

$$
c(a\gamma_t, t) \sim \gamma_t \ E[(Y - a)^+] ,
$$
Typical deviations ($\lim \bar{F}_t(\kappa) > 0$)

Assumption: there is a positive function $\gamma_t \to 0$ such that

$$\frac{X_t}{\gamma_t} \xrightarrow{d} Y \quad \text{as} \quad t \downarrow 0.$$

(In many stochastic volatility models $\gamma_t = \sqrt{t}$ and $Y = N(0, \sigma_0^2)$.)

Theorem

Under suitable moment conditions

$$c(a\gamma_t, t) \sim \gamma_t \mathbb{E}[(Y - a)^+] \quad \text{and} \quad \sigma_{\text{imp}}(a\gamma_t, t) \sim C_Y(a) \frac{\gamma_t}{\sqrt{t}}.$$
Outline

1. Preliminaries and notations
2. From option price to implied volatility
3. From tail probability to option price
4. Examples
How to apply results

▶ For typical deviations we study the weak convergence of X_t
How to apply results

- For **typical deviations** we study the **weak convergence** of X_t
- For **atypical deviations**
 - we study the **large deviations** of X_t
 - we need sharp asymptotics **only** for the logarithm of the tail probability (Gärtner-Ellis theorem)
Carr-Wu's Finite Logstable Model

The Carr & Wu Model is characterized by the following characteristic function:

$$E[e^{iuxt}] = \exp \left\{ t \left[iu\mu - |u|^{\alpha} \sigma^{\alpha} \left(1 + i \; \text{sign}(u) \tan \left(\frac{\pi \alpha}{2} \right) \right) \right] \right\}.$$
Carr-Wu’s Finite Logstable Model

The Carr & Wu Model is characterized by the following characteristic function:

$$E \left[e^{iuX_t} \right] = \exp \left\{ t \left[i\mu \left| u \right|^{\alpha} \sigma^{\alpha} \left(1 + i \text{sign}(u) \tan \left(\frac{\pi \alpha}{2} \right) \right) \right] \right\}. $$

Atypical deviations

If \(\frac{\kappa}{t^{1/\alpha}} \to \infty \) with \(0 < t \leq T \), then

- **Right-wing asymptotics:** \(\sigma_{\text{imp}}(\kappa, t) \sim B_{\alpha} \left(\frac{\kappa}{t} \right)^{-\frac{2-\alpha}{2(\alpha-1)}} \),

Carr-Wu’s Finite Logstable Model

The Carr & Wu Model is characterized by the following characteristic function:

\[E \left[e^{iuX_t} \right] = \exp \left\{ t \left[iu\mu - |u|^\alpha \sigma^\alpha \left(1 + i \text{sign}(u) \tan \left(\frac{\pi \alpha}{2} \right) \right) \right] \right\}. \]

Atypical deviations

If \(\frac{\kappa}{t^{1/\alpha}} \to \infty \) with \(0 < t \leq T \), then

- **Right-wing asymptotics:** \(\sigma_{\text{imp}}(\kappa, t) \sim B_\alpha \left(\frac{\kappa}{t} \right)^{- \frac{2 - \alpha}{2(\alpha - 1)}} \),

- **Left-wing asymptotics:**

\[\sigma_{\text{imp}}(-\kappa, t) \sim \left(\sqrt{\frac{\log \frac{\kappa^\alpha}{t^\kappa}}{\kappa}} + 1 - \sqrt{\frac{\log \frac{\kappa^\alpha}{t^\kappa}}{\kappa}} \right) \sqrt{\frac{2\kappa^\alpha}{t^\kappa}}. \]
Carr-Wu’s Finite Logstable Model

The Carr & Wu Model is characterized by the following characteristic function:

$$E[e^{iuX_t}] = \exp \left\{ t \left[iu\mu - |u|^\alpha \sigma^\alpha \left(1 + i \text{sign}(u) \tan \left(\frac{i \pi \alpha}{2} \right) \right) \right] \right\}.$$

Atypical deviations

If $\frac{\kappa}{t^{1/\alpha}} \to \infty$ with $0 < t \leq T$, then

- **Right-wing asymptotics:** $\sigma_{\text{imp}}(\kappa, t) \sim B_\alpha \left(\frac{\kappa}{t} \right)^{-\frac{2-\alpha}{2(\alpha-1)}}$,

- **Left-wing asymptotics:**

$$\sigma_{\text{imp}}(-\kappa, t) \sim \left(\sqrt{\frac{\log \frac{\kappa^\alpha}{t}}{\kappa}} + 1 - \sqrt{\frac{\log \frac{\kappa^\alpha}{t}}{\kappa}} \right) \sqrt{\frac{2\kappa}{t}}.$$

Typical deviations

If $t \to 0$ then $\sigma_{\text{imp}}(at^{1/\alpha}, t) \sim C(a) t^{\frac{2-\alpha}{2\alpha}}$.
Merton’s Jump diffusion model

In Merton’s Jump diffusion model the log-price evolves as

\[X_t = \sigma W_t + \alpha t + \sum_{i=0}^{N_t} Y_i \]

with \(Y_i \sim N(\mu, \delta^2) \) and \(N_t \sim Pois(\lambda) \).
Merton’s Jump diffusion model

In Merton’s Jump diffusion model the log-price evolves as

\[X_t = \sigma W_t + \alpha t + \sum_{i=0}^{N_t} Y_i \]

with \(Y_i \sim N(\mu, \delta^2) \) and \(N_t \sim \text{Pois}(\lambda) \).

Atypical deviations

For any family of \((\kappa, t)\) with \(\kappa \to \infty\), or when \(\kappa\) is fixed and \(t \to 0\) we have

\[\sigma_{imp}^2(\kappa, t) \sim \frac{\kappa}{2t} \frac{\delta}{\sqrt{2 \log \frac{\kappa}{t}}} \]
Merton’s Jump diffusion model

In Merton’s Jump diffusion model the log-price evolves as

\[X_t = \sigma W_t + \alpha t + \sum_{i=0}^{N_t} Y_i \]

with \(Y_i \sim N(\mu, \delta^2) \) and \(N_t \sim \text{Pois}(\lambda) \).

Atypical deviations

For any family of \((\kappa, t)\) with \(\kappa \to \infty \), or when \(\kappa \) is fixed and \(t \to 0 \) we have

\[\sigma_{\text{imp}}^2(\kappa, t) \sim \frac{\kappa}{2t} \frac{\delta}{\sqrt{2 \log \frac{\kappa}{t}}} \]

Typical deviations

If \(t \to 0 \) then \(\sigma_{\text{imp}}(a\sqrt{t}, t) = C(a) \).
The Heston Model

\[
\begin{aligned}
\begin{cases}
 \frac{dS_t}{S_t} &= \sqrt{V_t} \, dW^1_t, \\
 \frac{dV_t}{V_t} &= -\lambda (V_t - \nu) \, dt + \eta \sqrt{V_t} \, dW^2_t, \\
 X_0 &= 0, \quad V_0 = \sigma_0, \quad d\langle W^1, W^2 \rangle_t = \rho \, dt
\end{cases}
\end{aligned}
\]
The Heston Model

\[
\begin{align*}
 dS_t &= S_t \sqrt{V_t} \, dW^1_t, \\
 dV_t &= -\lambda (V_t - \vartheta) \, dt + \eta \sqrt{V_t} \, dW^2_t, \\
 X_0 &= 0, \quad V_0 = \sigma_0, \quad d\langle W^1, W^2 \rangle_t = \varrho \, dt
\end{align*}
\]

We define

\[
p^*(t) := \sup\{p > 0 : \mathbb{E}[S_t^p] < \infty\}.
\]

If \(\varrho > -1\), as \(t \to 0\)

\[
p^*(t) \sim \frac{C}{t}.
\]
The Heston Model - Implied Volatility

\(\kappa \to +\infty, \ t \ \text{fixed} - \text{Andersen & Piterbarg (2007)} \)

\[
\sigma_{\text{imp}}(\kappa, t) \sim \frac{\sqrt{2\kappa}}{\sqrt{t}} \left(\sqrt{p^*(t)} - \sqrt{p^*(t) - 1} \right).
\]
The Heston Model - Implied Volatility

\(\kappa \to +\infty, \ t \ fixed - \text{Andersen & Piterbarg (2007)} \)

\[
\sigma_{\text{imp}}(\kappa, t) \sim \frac{\sqrt{2\kappa}}{\sqrt{t}} \left(\sqrt{p^*(t)} - \sqrt{p^*(t) - 1} \right).
\]

\(\kappa \ fixed, \ t \downarrow 0 - \text{Forde & Jacquier (2009)} \)

\[
\sigma_{\text{imp}}(\kappa, t) \sim \frac{\kappa}{\sqrt{2 \Lambda^*(\kappa)}}.
\]
The Heston Model - Implied Volatility

\(\kappa \to +\infty, \ t \ fixed - \text{Andersen \& Piterbarg (2007)} \)

\[
\sigma_{\text{imp}}(\kappa, t) \sim_{k \uparrow \infty} \frac{\sqrt{2\kappa}}{\sqrt{t}} \left(\sqrt{p^*(t)} - \sqrt{p^*(t) - 1} \right).
\]

\(\kappa \ fixed, \ t \downarrow 0 - \text{Forde \& Jacquier (2009)} \)

\[
\sigma_{\text{imp}}(\kappa, t) \sim_{t \downarrow 0} \frac{\kappa}{\sqrt{2 \Lambda^*(\kappa)}}.
\]

\(\kappa \to +\infty, \ t \downarrow 0 \ (\text{Conjecture}) \)

\[
\sigma_{\text{imp}}(\kappa, t) \sim_{t \downarrow 0, \kappa \to \infty} \frac{\kappa}{\sqrt{2 C}}.
\]
Thank you for your attention
References

F. Caravenna, J. Corbetta,
General smile asymptotics with bounded maturity.

F. Caravenna, J. Corbetta,
The asymptotic smile of a multiscaling stochastic volatility model.

S. Benaim, P. Fritz,
Regular Variation and Smile Asymptotics.

K. Gao, R. Lee,
Asymptotics of implied volatility to arbitrary order.